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The problem of explosions above surfaces of liquids is studied under the 
following assumptions: 

(a) the effect of the external explosion on the motion of the free 
surface of the liquid can be simulated by an appropriate unsteady pressure 
distribution over a time-varying area; 

(b) the motion of the liquid is linearized, which can be justified by 
the large difference between densities of liquid and gas; 

(c) the liquid is considered as incompressible. This assumption in- 
creases in validity as the ratio of the speed of sound in the real 
liquid to the propagation speed of the shockwave over the surface in- 
creases. 

These assumptions make it possible to reduce the problem at hand to a 
problem of infinitely small surface wave disturbances over a heavy incom- 
pressible ideal liquid. Apparently, this conceptual setting was first 
used by Lamb [ 1 1 in connection with problems of long surface waves. In 
modern times, wave motion from this point of view has been studied in 
some detail by Finkelstein [ 2 1 L A similar approach was also used by 
Voit [ 2 1 , Cherkesov [ 4 1, and others. 

From the results for explosions above heavy liquids, it is easy to de- 
rive the motion of free surfaces of weightless fluids by letting the 
gravitational constant g approach zero. This condition corresponds to the 
initial effects of the explosion when the pressure forces dominate the 
gravitational forces. 

1. General expressions for the potential. Let a given pressure 

P&v y, t) be applied to free surface of a liquid extending to a depth 
h. ‘Ihe velocity potential in the liquid (p(x, y, z, t), satisfies 
Laplace’s equation, A+ = 0; the system of coordinates is chosen as 
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usual in the theory of surface waves* and t is time. If [(x, y, t) re- 
presents the displacement of the free surface. from the plane z = 0, we 

can derive the boundary conditions at this surface from the Cauchy- 

Lagrange integral, utilizing the basic assumptions of the theory of in- 

finitesimal waves: 

(1.1) 

One step of this derivation leads to a relation from which we may find 

the displacement 5(x, y, t). 

At the bottom we obviously have 

acp 0 
EG= 

for z=.-h (1.3) 

In dealing with an explosion over an initially calm surface we adopt 

as initial conditions: 

5 = 0, x/at=0 for t=O 

By means of Equation (l.2), the initial conditions can be expressed as 

follows: 

acp ’ I PO (2, Y 9 0) a29 
z- 

1 Go 6% YP t) - - 

at 2-0 P ’ at2 L=O = - p at 
t=o 

I f=O (1.4) 
t=o 

A two-dimensional Fourier representation is used for the desired 

potential function: 

where 

mm 

‘p (29 ?.I, -73 t) = & s s ‘P* (5, q, z, t) e-i (Ex+rlv) dE dq (1.5) 
---co 

and the asterisk denotes the Fourier transform. 

l X, y axes in the undisturbed plane of the free surface; z axis upward, 
opposite to gravity. 
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2. Point-explosion above a body of liquid with finite 
depth. In this case the effect of the explosion on the fluid begins 
when the spherical shockwave touches the surface of the fluid. Sub- 
sequently, the effect is felt on the free surface in a region of imposed 
pressure variations. Evidently, this region is a circle, the radius of 

which is a known function of time, denoted by r,, (t 1. 

Assuming that the pressure is always finite, the axial symnetry of the 
problem leads to the expression for the velocity potential: 

co 

~(r,z,t)=--$SchSchZ=h)Jo(rS) 
r,(o) 

v dS i up, (u, 0) Jo (US) da - 
0 0 

co -- 3 ch ‘fE; h, Jo Q.E) dE [ sin ’ ‘,” - ‘1 dT 7 a aP” (a4; T, Jo (d) da 
0 0 0 

Here J (u) is a Bessel function of order q, r is the radius in a 

cylindriczl coordinate system, and p,(a, r 1 represents the disturbing 
pressure. 

In the expression (2.1) the function po(u, T 1 differs from zero only 
inside a circle of radius a < r,,(r ), and is identically zero outside. 

Hence 

a~ “‘O,j;’ ‘) Jo (at) da = a7 s a 
r. W s UP, (a, 9 Jo (4 da 

0 0 
(2.2) 

so that Formula (2.1) is easily reduced to: 

O” cp(r,z,t)=--$ \t ch f&; h, Jo (re) de i cos a (t - T) dr ( ap, (a, T) Jo (at) da 
0 0 0 

Let us find the expression for the shape of the free surface of the 
liquid. Clearly, we must evaluate the limit: 

00 ro (t, 

ihaT = ---“;:-I \E 
z-to at ch f_ptt h, Jo (rE) dE \ ap, (a, t) Jo (d) da + 

0 0 

-I- f lim YE2 th Eh ch ifei ‘) J, (rE) dE \ 

r. 
sin 0 (t - 7) 

d7 

2+0 

o 
s 

ap, (a, T) Jo (uE) da 
0 0 

Keeping in mind that the integral in the first part of this expression 
is equal to po(r, t), we are led to the following form of the free 
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surface: 

Let the function p,(a, T) be given as a series in even powers of the 

radius a on the surface: 

PO@, r) = &x ($a* (2.3) 
n=o 

where X,(r) are known functions of time. Using the identity 

rr n 

5 
. 

cP’+L$, (ae) da = n! ro=‘+2 
2m J t] (-l)m I___ m+1 (rot;) 

(n-m)! (roE) m+1 
0 m=o 

we arrive at the series expression for the free surface: 

J 
X 

,+l(r~E) sin D (t - 7) 

E" 0 de (2.5) 

In the expressions for <,,, the order of integration is inverted. 

3. The shape of the free surface in the case of infinite 
depth. In this case, the limiting process h -, 00 yields. 

Let us seek the limiting value of the integral SIA as z + 0: 

8, = 7 fieEz Jo (,.E;) JmyiroE) sin 
0 

(3.2) 

Using Parseval's theorem for the Hankel transforms of first order 151 
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Here: 
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J m+l (r&) 
x (0 = Em ? 4 (E) = e@ J,, (rE) 

sin ‘r/gr (t - 7) 

l/z 

9’ (u) = ~WJ,, (rE) J, (uE) sin fi$; - ‘) dS 
0 

We note that for m = 0 the conditions for the applicability of 
Parseval’s theorem are not satisfied. Hence the preceding transforms are 

valid only for m > 0. For m = 0, the limiting value of the integral (3.2) 
is obtained differently, namely by analytic continuation from m > 0. We 
note that for m > 0, x*(u) represents a known Sonine integral [6 I 

u (PO% - uy- x* C”) = $Fl yn-1 (m _ I), (0 < u < ro) (3.3) 

In order to evaluate I/J*(U) at t = 0 we first note that 

eEz Jo (4 Jo 64 

Let us seek the limiting value of the integral, which is to be differ- 
entiated with respect to u. We apply Parseval’s theorem to the Hankel 
transform of zero order 

where 6 is a parameter between zero and unity which will be made to 
approach zero. We have 

L = 7 Exl (E) $1 (E) dS = 1 wxl* (4 $1. (4 dw (3.4) 
0 0 

Here 

Xl(E) = 
Jo@E~) JO(~) 

P 
9 Xl '(w) = ~J,(rQJ,(uF) J,(wE)E’-W 

0 

$1 (E) = 
sin JQ (t - 7) 

E’-s l/z 
es*, $r*(w) =I &Jo(wQ sin v$$-T) {SdE 

0 

Ihe conditions of applicability of Parseval’s theorem are fulfilled 
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only for 6 > 0. However, inasmuch as the left-hand side of (3.4) repre- 
sents a continuous function L, which is independent of 6, we deduce the 
following equality by letting 6 approach zero: 

L=$iiw~1.(w)$Jw)dw= ~ql,.(w)&‘(w) dw 
0 0 

Here 

Since xl,,*(w) represents a generalization of the Beber-Schafheitlin 
integral, 

x10* (4 = 7~~[(r+u)~-w~][w~-(r-u)~] 
(Ir--u)<w<r+ul 

For the evaluation of 4,, *(w) at 2 = 0, we take note of the relation 

J, (WE) = ;“s” cos (we sin 0) d0 
0 

so that 

(3.5) 

Further evaluations will be carried out for t = 0. The correctness of 
the interchange of the order of integration in the formulas below is 
easily justified 17 I . We carry out this interchange in (3.5) with the 
aid of the relation 

We also introduce the parameter P = F (AT. Now, 

Elementary manipulations yield 

E(p)= ~cosvasin2~vdv = p\si”p”(l -hz)dk 
0 0 

In this manner, 
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Let us introduce an ew variable of integration v into the second 
integral of the last formula 

1 
chv, 

d0 
sin= sin 

= --dv 

Then 

Once more we change the variable of integration 

l--2=COS~, dh = -& cos ; d8 

and we obtain 

(3.6) 

Finally, writing the desired expression as 

r+u 
LIZ_, = % \ J1. [g(t8; “‘1 J_, [” (t krJ2 j x 

k-l_& 4 4 

’ I/[(r + 2~)~ - waylrvjz - (r - u)*] 
= ~fl4! (r, u, t, T) (3.7) 

it is not difficult to find the limiting value for SA at the surface, for 
m = 1, . . . . n: 

8, jrzo = - - .t. -T %M( 
s v2 Zm--l (m - I)! rOmfl o 

‘;‘$ t, ‘) (ro2 _ U2)m-iU2dU 
(3.8) 

For the case m = 0, we obviously have 
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Therefore, 
t - 7 8M (r, rD, t, 7) 

6 LO =- V5 &.. 

As a consequence, we obtain for the expressions (3.1) 

t 

LJ(~, t) = - h o h,(T) $+‘(T) 

5 

dM(r, ro, t, 7) 

,ar0 

(t - T) dT 

t 

t, (r, t) = - 1/2 2,n-l;m _ ij! o in (4 rin-zm (4 (t - 4 dc x s 

r. 

X 
s 

aM”la,“’ ‘9 ‘) (r02_ U2)m-1U2dU 
(m=1, 

0 

‘Ihe shape of the free surface is then given by 

r (r, t) = k2 i i An (7) ro2n+1 (2) ZM “,;19 tp 4 (t - T) dt f 
n=o 0 

-t- -&- ; $ (n (--;/;;!t 1l! i h, (T) r02n--2m (T) (t - T) dr x 
?a=lrn=l 0 

X 
r* aM(r, u, t, 7) 

s au (ro2 - u2)“-lu2du 
0 

It can be shown that this formula can be reduced to 

r;(r, t) =-A\ 
PV2 

aMcr’a;; ” ‘) p. [ro(z), T] r. (T) (t - T) dr - 
IJ 

_ _& J (t-T)& 5 aM ‘r;;““’ ‘) apo(&’ ‘) udu 

0 0 

where pO is the function given in a series form in (2.3). 

4. Evaluation of the function M. ‘Ihe function Mr, rO, t, 
defined through (3.71, can be represented as follows: 

M (r, ro, t, T) = “I;y;o”’ (A = ;;:;;;; , k = lr -ro ‘) 
r 4- 80 

Here 

. 

(3.9) 

(3.10) 

’ ., n) 

(3.11) 

71, 

(4.1) 
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a&f -=_ 
ar0 

Here 

- 1 

i 

@(A, k)+k(l*k)[~t~, Q--P, k)l for r > r0 

(r + r# 0 (A, k) -- k (1 - k)W(A, k)--Lt.4 k)l fOl' I’< Fo (4.2) 

y(A* k)= \ [JK(;)J-iw (-$) -J, (ejJ&)] (sl_k2),,(l!:~2)(s2_k2) 
k 4 4 4 

where K and E are the complete elliptic integrals of the first and 
second kind. 

When the motion of the free surface outside the region of the applied 
pressure is considered, then r always exceeds rO, i. e. k > k, # 0, The 
integrals MA, k) and WA, k) can then be found by numerical integration 
as functions of parameters A and k; these functions do not depend on the 
actual form of po. However, the above formulas lead to excessive computa- 
tional difficulties when the motion of the free surface within the region 
of applied pressure is considered. Since in that region the effect of the 
explosive pressures will tend to dominate, it is meaningful to study the 
problem of explosions above the surface of weightless incompressible 
fluids. Letting g = 0 in Equation (4.11, we obtain 

M= 21r2 K{t’-f-k%) 
R r + r0 

(4.3) 

Hence (4.4) 

i3M 2vz 
kK(~l-k2)--E(V’1--kB)+(.1-k) for r>Fo 

-= 4 (1 - k) 
ara n (ra - r$) - kK(~i=-@+E((1/1-k*)-(i+k) 

k(1 +kl 
for r<b 

These formulas make it possible to determine the displacement of the 
free surface for arbitrary values of r. For instance, we find LtO, t) of 
a weightless fluid when the applied pressure is independent of r, p. = 
F(r 1. It is easy to see that 

If H stands for the height above the liquid surface at which the 
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explosion occurs, tH for the time between the explosion and the first 
arrival of the shock at the free surface, and if RO(tH + r 1 designates 
the spread of the shock in the gas above the liquid, then 

r(J (T) = J/-R,2 (tH + 7) - HZ 

For small values* of r 

r. (7) = T*/~V~HR,’ (tH) + 0 (7) 

It follows that the displacement of the free liquid surface directly 
under the center of the explosion is always finite for arbitrary pro- 
pagation rates of the shock in the gaseous medium above the liquid, pro- 
vided F(s 1 satisfies suitable conditions. 

Incidentally, let us remark that in the case of explosions above 
ponderable fluids, it is possible to take advantage of the smallness of 
the ratio A/k for the evaluation of the free-surface displacements out- 
side the pressure-affected region even when k is small, Developing the 
product of the Bessel functions, occuring in (4.11 in the integral for 
&(A, k), into a series and keeping only its first tm terms, we find 
the expression for M(r, rO, t, r ) 

Partial differentiation of Mr, rO, t, r 1 with respect to the para- 
meter r,, provides the remaining information necessary for the evaluation 
of the surface displacements. 

In conclusion the author expresses his sincere appreciation to A.A. 
Nikolskii for guidance in the present Hark. 

* undoubtedly, the prime in R,,’ represents the derivative of R, and 
O(P), terms of order T or smaller. 
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